Pertidaksamaan

Sifat-Sifat Pertidaksamaan

  1. tanda pertidaksamaan tidak berubah jika kedua ruas ditambah atau dikurangi dengan bilangan yang sama
Jika a < b maka:
a + c < b + c
a – c < b – c
  1. tanda pertidaksamaan tidak berubah jika kedua ruas dikali atau dibagi dengan bilangan positif yang sama
Jika a < b, dan c adalah bilangan positif, maka:
a.c < b.c
a/b < b/c
  1. tanda pertidaksamaan akan berubah jika kedua ruas pertidaksamaan dikali atau dibagi dengan bilangan negatif yang sama
Jika a < b, dan c adalah bilangan negatif, maka:
a.c > b.c
a/c > b/c
  1. tanda pertidaksamaan tidak berubah jika kedua ruas positif masing-masing dikuadratkan
Jika a < b; a dan b sama-sama positif, maka: a2 < b2

Pertidaksamaan Linear

→ Variabelnya berpangkat 1
Penyelesaian:
Suku-suku yang mengandung variabel dikumpulkan di ruas kiri, dan konstanta diletakkan di ruas kanan
Contoh:


Pertidaksamaan Kuadrat

→ Variabelnya berpangkat 2
Penyelesaian:
  1. Ruas kanan dibuat menjadi nol
  2. Faktorkan
  3. Tentukan harga nol, yaitu nilai variabel yang menyebabkan nilai faktor sama dengan nol
  4. Gambar garis bilangannya
Jika tanda pertidaksamaan ≥ atau ≤, maka harga nol ditandai dengan titik hitam •
Jika tanda pertidaksamaan > atau <, maka harga nol ditandai dengan titik putih °
  1. Tentukan tanda (+) atau (–) pada masing-masing interval di garis bilangan. Caranya adalah dengan memasukkan salah satu bilangan pada interval tersebut pada persamaan di ruas kiri.
Tanda pada garis bilangan berselang-seling, kecuali jika ada batas rangkap (harga nol yang muncul 2 kali atau sebanyak bilangan genap untuk pertidaksamaan tingkat tinggi), batas rangkap tidak merubah tanda
  1. Tentukan himpunan penyelesaian
→ jika tanda pertidaksamaan > 0 berarti daerah pada garis bilangan yang diarsir adalah yang bertanda (+)
→ jika tanda  pertidaksamaan < 0 berarti daerah pada garis bilangan yang diarsir adalah yang bertanda (–)
Contoh:
(2x – 1)2 ≥ (5x – 3).(x – 1) – 7
4x2 – 4x + 1 ≥ 5x2 – 5x – 3x + 3 – 7
4x2 – 4x + 1 – 5x2 + 5x + 3x – 3 + 7 ≥ 0
–x2 + 4x + 5 ≥ 0
–(x2 – 4x – 5) ≥ 0
–(x – 5).(x + 1) ≥ 0
Harga nol: x – 5 = 0 atau x + 1 = 0
x = 5 atau x = –1
Garis bilangan:
  • menggunakan titik hitam karena tanda pertidaksamaan ≥
  • jika dimasukkan x = 0 hasilnya positif
  • karena 0 berada di antara –1 dan 5, maka daerah tersebut bernilai positif, di kiri dan kanannya bernilai negatif
  • karena tanda pertidaksamaan ≥ 0, maka yang diarsir adalah yang positif

Jadi penyelesaiannya: {x | –1 ≤ x ≤ 5}

Pertidaksamaan Tingkat Tinggi

→ Variabel berpangkat lebih dari 2
Penyelesaian sama dengan pertidaksamaan kuadrat
Contoh:
(2x + 1)2.(x2 – 5x + 6) < 0
(2x + 1)2.(x – 2).(x – 3) < 0
Harga nol: 2x + 1 = 0 atau x – 2 = 0 atau x – 3 = 0
x = –1/2 atau x = 2 atau x = 3
Garis bilangan:
  • menggunakan titik putih karena tanda pertidaksamaan <
  • jika dimasukkan x = 0 hasilnya positif
  • karena 0 berada di antara –1/2 dan 2, maka daerah tersebut bernilai positif
  • karena –1/2 adalah batas rangkap (–1/2 muncul sebanyak 2 kali sebagai harga nol, jadi –1/2 merupakan batas rangkap), maka di sebelah kiri –1/2 juga bernilai positif
  • selain daerah yang dibatasi oleh batas rangkap, tanda positif dan negatif berselang-seling
  • karena tanda pertidaksamaan ³ 0, maka yang diarsir adalah yang positif

Jadi penyelesaiannya: {x | 2 < x < 3}

Pertidaksamaan Pecahan

→ ada pembilang dan penyebut
Penyelesaian:
  1. Ruas kanan dijadikan nol
  2. Samakan penyebut di ruas kiri
  3. Faktorkan pembilang dan penyebut (jika bisa)
  4. Cari nilai-nilai variabel yang menyebabkan pembilang dan penyebutnya sama dengan nol (harga nol untuk pembilang dan penyebut)
  5. Gambar garis bilangan yang memuat semua nilai yang didapatkan pada langkah 4
Apapun tanda pertidaksamaannya, harga nol untuk penyebut selalu digambar dengan titik putih (penyebut suatu pecahan tidak boleh sama dengan 0 agar pecahan tersebut mempunyai nilai)
  1. Tentukan tanda (+) atau (–) pada masing-masing interval
Contoh 1:

Harga nol pembilang: –5x + 20 = 0
–5x = –20 → x = 4
Harga nol penyebut: x – 3 = 0 → x = 3
Garis bilangan:
→ x = 3 digambar menggunakan titik putih karena merupakan harga nol untuk penyebut

Jadi penyelesaiannya: {x | 3 < x ≤ 4}

Contoh 2:

Harga nol pembilang: x – 2 = 0 atau x + 1 = 0
x = 2 atau x = –1
Harga nol penyebut: tidak ada, karena penyebut tidak dapat difaktorkan dan jika dihitung nilai diskriminannya:
D = b2 – 4.a.c = 12 – 4.1.1 = 1 – 4 = –3
Nilai D-nya negatif, sehingga persamaan tersebut tidak mempunyai akar real
(Catatan: jika nilai D-nya tidak negatif, gunakan rumus abc untuk mendapat harga nol-nya)
Garis bilangan:

Jadi penyelesaiannya: {x | x ≤ –1 atau x ≥ 2}

Pertidaksamaan Irasional/Pertidaksamaan Bentuk Akar

→ variabelnya berada dalam tanda akar
Penyelesaian:
  1. Kuadratkan kedua ruas
  2. Jadikan ruas kanan sama dengan nol
  3. Selesaikan seperti menyelesaikan pertidaksamaan linear/kuadrat
  4. Syarat tambahan: yang berada di dalam setiap tanda akar harus ≥ 0
Contoh 1:

Kuadratkan kedua ruas:
x2 – 5x – 6 < x2 – 3x + 2
x2 – 5x – 6 – x2 + 3x – 2 < 0
–2x – 8 < 0
Semua dikali –1:
2x + 8 > 0
2x > –8
x > –4
Syarat 1:
x2 – 5x – 6 ≥ 0
(x – 6).(x + 1) ≥ 0
Harga nol: x – 6 = 0 atau x + 1 = 0
x = 6 atau x = –1
Syarat 2:
x2 – 3x + 2 ≥ 0
(x – 2).(x – 1) ≥ 0
Harga nol: x – 2 = 0 atau x – 1 = 0
x = 2 atau x = 1
Garis bilangan:

Jadi penyelesaiannya: {x | –4 < x ≤ –1 atau x ≥ 6}

Contoh 2:

Kuadratkan kedua ruas:
x2 – 6x + 8 < x2 – 4x + 4
x2 – 6x + 8 – x2 + 4x – 4 < 0
–2x + 4 < 0
–2x < –4
Semua dikalikan –1
2x > 4
x > 2
Syarat:
x2 – 6x + 8 ≥ 0
(x – 4).(x – 2) ≥ 0
Harga nol: x – 4 = 0 atau x – 2 = 0
x = 4 atau x = 2
Garis bilangan:

Jadi penyelesaiannya: {x | x ≥ 4}

Pertidaksamaan Nilai Mutlak

→ variabelnya berada di dalam tanda mutlak | ….. |
(tanda mutlak selalu menghasilkan hasil yang positif, contoh: |3| = 3; |–3| = 3)
Pengertian nilai mutlak:

Penyelesaian:
Jika |x| < a berarti: –a < x < a, dimana a ≥ 0
Jika |x| > a berarti: x < –a atau x > a, dimana a ≥ 0

Contoh 1:
|2x – 3| ≤ 5
berarti:
–5 ≤ 2x – 3 ≤ 5
–5 + 3 ≤ 2x ≤ 5 + 3
–2 ≤ 2x ≤ 8
Semua dibagi 2:
–1 ≤ x ≤ 4

Contoh 2:
|3x + 7| > 2
berarti:
3x + 7 < –2 atau 3x + 7 > 2
3x < –2 – 7 atau 3x > 2 – 7
x < –3 atau x > –5/3

Contoh 3:
|2x – 5| < |x + 4|
Kedua ruas dikuadratkan:
(2x – 5)2 < (x + 4)2
(2x – 5)2 – (x + 4)2 < 0
(2x – 5 + x + 4).(2x – 5 – x – 4) < 0    (Ingat! a2 – b2 = (a + b).(a – b))
(3x – 1).(x – 9) < 0
Harga nol: 3x – 1 = 0 atau x – 9 = 0
x = 1/3 atau x = 9
Garis bilangan:

Jadi penyelesaiannya: {x | 1/3 < x < 4}

Contoh 4:
|4x – 3| ≥ x + 1
Kedua ruas dikuadratkan:
(4x – 3)2 ≥ (x + 1)2
(4x – 3)2 – (x + 1)2 ≥ 0
(4x – 3 + x + 1).(4x – 3 – x – 1) ≥ 0
(5x – 2).(3x – 4) ≥ 0
Harga nol: 5x – 2 = 0 atau 3x – 4 = 0
x = 2/5 atau x = 4/3
Syarat:
x + 1 ≥ 0
x ≥ –1
Garis bilangan:

Jadi penyelesaiannya: {x | –1 ≤ x ≤ 2/5 atau x ≥ 4/3}

Contoh 5:
|x – 2|2 – |x – 2| < 2
Misalkan |x – 2| = y
y2 – y < 2
y2 – y – 2 < 0
(y – 2).(y + 1) < 0
Harga nol: y – 2 = 0 atau y + 1 = 0
y = 2 atau y = –1
Garis bilangan:

Artinya:
–1 < y < 2
–1 < |x – 2| < 2
Karena nilai mutlak pasti bernilai positif, maka batas kiri tidak berlaku
|x – 2| < 2
Sehingga:
–2 < x – 2 < 2
–2 + 2 < x < 2 + 2
0 < x < 4

Sistem Persamaan (Linear dan Kuadrat)

Sistem Persamaan Linear Dua Variabel (SPLDV)

→ mengandung 2 variabel berpangkat 1
Bentuk umum:

dimana a1, a2, b1, b2, c1, dan c2 adalah bilangan real
Catatan:

Penyelesaian:
  1. Metode grafik
  2. Metode substitusi
  3. Metode eliminasi
  4. Metode gabungan substitusi-eliminasi
Contoh:

Metode grafik:
→ gambar grafik untuk tiap persamaan, cara paling mudah: masukkan x = 0, hitung nilai y untuk mendapatkan titik pertama; lalu masukkan y = 0, hitung nilai x untuk mendapatkan titik kedua
→ jika saat dimasukkan x = 0, didapatkan nilai y = 0, untuk mendapatkan titik kedua masukkan nilai x selain 0


Metode substitusi:
Dari persamaan 1: 2x – y = 8 → 2x – 8 = y
Masukkan ke persamaan 2:
x + 2y = 14
x + 2.(2x – 8 ) = 14
x + 4x – 16 = 14
5x = 14 + 16
5x = 30
x = 30/5 = 6
y = 2x – 8 = 2.6 – 8 = 12 – 8 = 4
Jadi penyelesaiannya: {(6, 4)}
Metode eliminasi:
Eliminasi x: (Persamaan 2 dikali 2)
2x –   y = 8
2x + 4y = 28  –  (dikurangi karena nilai x-nya sama-sama positif)
–5y = –20
y = –20/–5 = 4
Eliminasi y: (Persamaan 1 dikali 2)
4x – 2y = 16
  x + 2y = 14   +  (ditambah karena nilai y-nya positif dan negatif)
5x = 30
x = 30/5 = 6
Jadi penyelesaiannya: {(6, 4)}
Metode gabungan (eliminasi-substitusi)
Eliminasi x: (Persamaan 2 dikali 2)
2x –   y = 8
2x + 4y = 28  –  (dikurangi karena nilai x-nya sama-sama positif)
–5y = –20
y = –20/–5 = 4
Masukkan ke salah satu persamaan, misalnya persamaan 1:
2x – y = 8
2x – 4 = 8
2x = 8 + 4
2x = 12
x = 12/2 = 6
Jadi penyelesaiannya: {(6, 4)}

Sistem Persamaan Linear Tiga Variabel (SPLTV)

Bentuk umum:

dimana a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2 dan d3 adalah bilangan real
Penyelesaian:
→ Eliminasi salah satu variabel dari sistem sehingga mernjadi SPLDV (misal: dari persamaan 1 dan 2 eliminasi x, persamaan 1 dan 3 atau 2 dan 3 juga eliminasi x)
Contoh:

Eliminasi z dari persamaan 1 dan 2 (persamaan 1 dikali 2):
2x + 2y + 2z = 12
2x + 3y – 2z =   2  (+)
4x + 5y = 14 …… Persamaan 4
Eliminasi z dari persamaan 1 dan 3:
x +   y + z = 6
3x – 2y + z = 2   (–)
–2x + 3y = 4 …… Persamaan 5
Eliminasi x dari persamaan 4 dan 5 (persamaan 5 dikali 2):
4x + 5y = 14
–4x + 6y =   8   (+)
11y = 22
y = 22/11 = 2
Masukkan y ke persamaan 5:
–2x + 3y = 4
–2x + 3.2 = 4
–2x + 6 = 4
–2x = 4 – 6
–2x = –2
x = –2/–2 = 1
Masukkan x dan y ke persamaan 1:
x + y + z = 6
1 + 2 + z = 6
z = 6 – 1 – 2 = 3
Jadi penyelesaiannya: {(1, 2, 3)}

Sistem Persamaan Linear Kuadrat Dua Variabel (SPLKDV)

Bentuk Umum:

Penyelesaian:
→ Substitusi persamaan 1 ke 2 diperoleh:
mx + n = ax2 + bx + c
ax2 + (b –m)x + (c – n) = 0
Nilai diskriminannya: D = b2 – 4.a.c = (b – m)2 – 4.a.(c – n)
  • D > 0 → SPLKV mempunyai 2 akar (penyelesaian) nyata
  • D = 0 → SPLKV mempunyai 1 akar (penyelesaian) nyata
  • D < 0 → SPLKV tidak mempunyai akar (penyelesaian) nyata
→ Dapat juga diselesaikan dengan grafik
Contoh:

Substitusi persamaan 1 ke 2
2 – x = x2
x2 + x – 2 = 0
(x + 2).(x – 1) = 0
x + 2 = 0 atau x – 1 = 0
x = –2 atau x = 1
untuk x = –2 → y = 2 – (–2) = 2 + 2 = 4 (nilai x juga dapat dimasukkan ke persamaan 2)
untuk x = 1 → y = 2 – 1 = 1
Jadi penyelesaiannya: {(–2, 4), (1, 1)}
Grafik:
→ cara menggambar grafik fungsi kuadrat: lihat di bab FUNGSI KUADRAT
→ cara menggambar garis: lihat di bagian SPLDV

Sistem Persamaan Kuadrat (SPK)

Bentuk umum:

Penyelesaian:
→ Jika persamaan 1 = persamaan 2, maka SPK mempunyai banyak penyelesaian
→ Jika persamaan 1 ≠ persamaan 2, maka substitusi persamaan 1 ke 2, sehingga diperoleh:
ax2 + bx + c = px2 + qx + r
(a – p)x2 + (b – q)x + (c – r) = 0
Hitung nilai Diskriminan: D = (b – q)2 – 4.(a – p).(c – r)
  • D > 0 → SPK mempunyai 2 akar (penyelesaian) real
  • D = 0 → SPK mempunyai 1 akar (penyelesaian) real
  • D < 0 → SPK tidak mempunyai akar (penyelesaian) real
→ dapat juga diselesaikan dengan cara grafik
Contoh 1:

Substitusi persamaan1 ke 2:
x2 – 2x – 3 = –x2 – 2x – 5
x2 – 2x – 3 + x2 + 2x + 5 = 0
2x2 + 2 = 0
Semua dibagi 2:
x2 + 1 = 0
Karena persamaan tidak dapat difaktorkan, hitung nilai D:
D = b2 – 4.a.c = 02 – 4.1.1 = a – 4
Karena D < 0 maka SPK tidak mempunya penyelesaian real
Grafik:
→ Cara menggambar grafik fungsi kuadrat: lihat di bab FUNGSI KUADRAT

Contoh 2:

Substitusi persamaan 1 ke 2:
x2 – 2x = –1/2 x2 + 4x – 6
Semua dikalikan 2:
2x2 – 4x = –x2 + 8x – 12
2x2 – 4x + x2 – 8x + 12 = 0
3x2 – 12x + 12 = 0
Semua dibagi 3:
x2 – 4x + 4 = 0
(x – 2).(x – 2) = 0
x = 2 → y = x2 – 2x = 22 – 2.2 = 4 – 4 = 0
Jadi penyelesaiannya: {(2, 0)}
Grafik:

Persamaan dan Pertidaksamaan Trigonometri

Persamaan Dasar

sin x = sin a                  
x = a + k.360° atau x = (180 – a) + k.360° (kuadran I atau II)
cos x = cos a
x = a + k.360° atau x = –a + k.360° (kuadran I atau IV)
tan x = tan a
x = a + k.180
*k = bilangan bulat
Catatan:
Jika ada persamaan cos x = sin a, cot x = tan a, sec x = cosec a, dan sebaliknya, salah satu diubah menjadi (90 – a)°,
contoh: cos x = sin a → cos x = cos (90 – a)°
Contoh:
  • Tentukan HP (Himpunan Penyelesaian) dari 2 cos x – √3 = 0 untuk 0 ≤ x ≤ 360°
2 cos x = √3
cos x = ½ √3
cos x = cos 30°
x = 30° + k.360°              atau                        x = (180 – 30)° + k.360°
k = 0 → x = 30°                                                 x = 150° + k.360°
k = 1 → x = 390° (tidak memenuhi)         k = 0 → x = 150°
Jadi HP = {30°, 150°}
  • Tentukan HP dari tan (60 – ½ x)° = cot (x + 120)° untuk 0 ≤ x ≤ 360°
tan (60 – ½ x)° = tan (90 – (x + 120))°
tan (60 – ½ x)° = tan (–x – 30)°
60° – ½ x = –x – 30° + k.180°
x – ½ x = –30° – 60° + k.180°
½ x = –90° + k.180°
x = –180° + k.360°
k = 1 → x = 180°
Jadi HP = {180°}

Persamaan bentuk a cos nx + b sin nx

a cos nx + b sin nx diubah menjadi k cos(nx – α)
dimana
Selanjutnya diselesaikan seperti menyelesaikan persamaan dasar cos x = cos a
Penentuan letak α:
  • Jika a +, b + → α di kuadran I
  • Jika a –, b + → α di kuadran II
  • Jika a –, b – → α di kuadran III
  • Jika a +, b – → α di kuadran IV
Untuk persamaan a cos nx + b sin nx = c, syarat agar persamaan ini dapat diselesaikan:
Dan agar persamaan ini tidak dapat diselesaikan:

Persamaan bentuk a cos2x + b sin x.cos x + c sin2x = d

Caranya, lakukan dengan mengubah unsur-unsurnya seperti berikut ini:
Selanjutnya persamaan diselesaikan seperti menyelesaikan persamaan a cos nx + b sin nx = c

Persamaan bentuk a(cos x ± sin x) + b sin x.cos x + c = 0

Caranya:
Misalkan (cos x ± sin x) = p
maka
(cos x ± sin x)2 = p2
cos2x ± 2 sin x.cos x + sin2x = p2
1 ± 2 sin x.cos x = p2
± 2 sin x.cos x = p2 – 1
Sehingga 2 sin x.cos x = ± ½ (p2 – 1)
Sehingga persamaan di atas akan menjadi persamaan kuadrat:
a.p ± ½ b(p2 – 1) + c = 0
Selesaikan dengan cara pemfaktoran atau rumus abc untuk mendapatkan nilai p, kemudian persamaan cos x ± sin x = p dapat diselesaikan dengan cara seperti menyelesaikan persamaan a cos nx + b sin nx = c

Nilai ekstrim y = a cos nx + b sin nx + c


Pertidaksamaan Trigonometri

→ mencari harga nol sama dengan cara menyelesaikan persamaan trigonometri
→ diselesaikan dengan menggunakan garis bilangan
Contoh:
Selesaikan sin 2x < cos x  untuk 0 ≤ x ≤ 360°
Cara:
sin 2x – cos x < 0
2 sin x.cos x – cos x < 0
cos x.(2 sin x – 1) < 0
harga nol:
  • cos x = 0
cos x = cos 90°
x = 90° + k.360°      atau      x = –90° + k.360°
k = 0 → x = 90°                        k = 1 → x = 270°
  • 2 sin x – 1 = 0
2 sin x = 1
sin x = ½
sin x = sin 30°
x = 30° + k.360°        atau      x = (180 – 30)° + k.360°
k = 0 → x = 30°                         x = 150° + k.360°
                                                           k = 0 → x = 150°
Memberi tanda (+) dan (-) pada garis bilangan:
Jika x = 180° maka sin 2.180° – cos 180° = sin 360° – cos 180° = 0 – (–1) = 1 (+)
Jadi garis bilangannya:

karena yang diminta kurang dari (<) 0, maka yang diarsir adalah bagian-bagian yang bertanda (-)
Sehingga HP-nya: {0° ≤ x < 30° atau 90° < x < 150° atau 270° < x ≤ 360°}

Trigonometri

Ukuran Sudut

1 putaran = 360 derajat (360°) = 2π radian

Perbandingan trigonometri


Catatan:
  • Sin = sinus
  • Cos = cosinus
  • Tan/Tg = tangens
  • Sec = secans
  • Cosec/Csc = cosecans
  • Cot/Ctg = cotangens
Dari gambar tersebut dapat diperoleh:

(sec merupakan kebalikan dari cos,
csc merupakan kebalikan dari sin, dan
cot merupakan kebalikan dari tan)
Contoh:
Dari segitiga berikut ini:

Diketahui panjang AB = 12 cm, AC = 13 cm. Hitung semua nilai perbandingan trigonometri untuk sudut A!
Pertama, hitung dulu panjang BC dengan menggunakan rumus Phytagoras:

Nilai perbandingan trigonometri beberapa sudut istimewa

* tambahan: sin 37° = cos 53° = 0,6

Kuadran

Kuadran adalah pembagian daerah pada sistem koordinat kartesius → dibagi dalam 4 daerah
Nilai perbandingan trigonometri untuk sudut-sudut di berbagai kuadran memenuhi aturan seperti pada gambar:

Untuk sudut b > 360° → b = (k . 360 + a) → b = a
(k = bilangan bulat > 0)
Mengubah fungsi trigonometri suatu sudut ke sudut lancip
  • Jika menggunakan 90 ± a atau 270 ± a maka fungsi berubah:
sin ↔ cos
tan ↔ cot
sec ↔ csc
  • Jika menggunakan 180 ± a atau 360 ± a maka fungsi tetap
Sudut dengan nilai negatif
Nilai negatif diperoleh karena sudut dibuat dari sumbu x, diputar searah jarum jam
Untuk sudut dengan nilai negatif, sama artinya dengan sudut yang berada di kuadran IV
Contoh:
  • Cos 120º = cos (180 – 60)º = – cos 60º = – 1/2 (120º ada di kuadran II sehingga nilai cos-nya negatif)
  • Cos 120º = cos (90 + 30)º = – sin 30º = – 1/2
  • Tan 1305º = tan (3.360 + 225)º = tan 225º = tan (180 + 45)º = tan 45º = 1 (225º ada di kuadran III sehingga nilai tan-nya positif)
  • Sin –315º = – sin 315º = – sin (360 – 45)º = –(– sin 45)º = sin 45º = 1/2 √2

Identitas Trigonometri

Sehingga, secara umum, berlaku:
sin2a + cos2a = 1
1 + tan2a = sec2a
1 + cot2a = csc2a

Grafik fungsi trigonometri

y = sin x

y = cos x

y = tan x

y = cot x

y = sec x

y = csc x

Menggambar Grafik fungsi y = A sin/cos/tan/cot/sec/csc (kx ± b) ± c

  1. Periode fungsi untuk sin/cos/sec/csc = 2π/k → artinya: grafik akan berulang setiap kelipatan 2π/k
    Periode fungsi untuk tan/cot = π/k → artinya: grafik akan berulang setiap kelipatan π/k
  1. Nilai maksimum = c + |A|, nilai minimum = c – |A|
  2. Amplitudo = ½ (ymax – ymin)
  3. Cara menggambar:
    1. Gambar grafik fungsi dasarnya seperti pada gambar di atas
    2. Hitung periode fungsi, dan gambarkan grafik sesuai dengan periode fungsinya
    3. Jika A ≠ 1, kalikan semua nilai y pada grafik fungsi dasar dengan A
    4. Untuk kx + b → grafik digeser ke kiri sejauh b/k
       Untuk kx – b → grafik digeser ke kanan sejauh b/k
    1. Untuk + c → grafik digeser ke atas sejauh c
       Untuk – c → grafik digeser ke bawah sejauh c
Contoh: y = 2 sin (3x + 90)° + 3
→ periode fungsi = 2p/3 = 120°
Langkah-Langkah:
Grafik fungsi y = sin x

Karena periode fungsinya 2π/3, maka dalam selang 0 hingga 2π, terjadi 3 gelombang sinus → y = sin 3x

Ampitudo dikali 2 → y = 2 sin 3x

Grafik digeser ke kiri sejauh 90°/3 = 30° = π/6 → y = 2 sin (3x + 90)°

Grafik digeser ke atas sejauh 3 satuan → y = 2 sin (3x + 90)° + 3

Aturan-Aturan pada Segitiga ABC

Aturan Sinus
Dari segitiga ABC di atas:

Sehingga, secara umum, dalam segitiga ABC berlaku rumus:

Aturan Cosinus
Dari segitiga ABC di atas:

Sehingga, secara umum:

Luas Segitiga
Dari segitiga ABC di atas diperoleh:

Sehingga, secara umum:






Rumus Jumlah dan Selisih Sudut

Dari gambar segitiga ABC berikut:

AD = b.sin α
BD = a.sin β
CD = a.cos β = b.cos α

Untuk mencari cos(α+β) = sin (90 – (α+β))°


Untuk fungsi tangens:

Sehingga, rumus-rumus yang diperoleh adalah:

 Rumus Sudut Rangkap


Sehingga, rumus-rumus yang diperoleh adalah:
Penurunan dari rumus cos2α:

Rumus Perkalian Fungsi Sinus dan Kosinus

Dari rumus-rumus jumlah dan selisih dua sudut dapat diturunkan rumus-rumus baru sebagai berikut:

Sehingga, rumus-rumus yang diperoleh:

Rumus Jumlah dan Selisih Fungsi Sinus dan Kosinus

Dari rumus perkalian fungsi sinus dan kosinus dapat diturunkan rumus jumlah dan selisih fungsi sinus dan kosinus.

Maka akan diperoleh rumus-rumus:

Contoh-contoh soal:
(1) Tanpa menggunakan daftar, buktikan bahwa:


(2) Buktikan bahwa dalam segitiga ABC berlaku: