Fungsi

Pasangan terurut

Contoh:
A = {1, 2, 3}, B = {4, 5}
Himpunan semua pasangan terurut dari A dan B adalah:
{(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)}

Relasi
Relasi adalah himpunan dari pasangan terurut ang memenuhi aturan tertentu
Contoh:
A = {1, 2, 3, 4}, B = {2, 4}
Jika ada relasi R dari  A ke B dengan aturan ”faktor dari”, maka himpunan pasangan terurut untuk relasi tersebut adalah:
R = {(1, 2), (1, 4), (2, 2), (2, 4), (4, 4)}
Diagram panahnya:


Fungsi
Fungsi dari A ke B adalah relasi yang memasangkan setiap anggota himpunan A ke hanya satu anggota himpunan B
Notasi fungsi f dari A ke B ditulis f : A → B
A disebut domain (daerah asal)
B disebut kodomain (daerah kawan)
Himpunan bagian dari B yang merupakan hasil dari fungsi A ke B disebut range (daerah hasil)
Fungsi juga dapat dinyatakan dengan lambang f : x → y = f(x)
dimana y = f(x) adalah rumus fungsi dengan x sebagai variabel bebas dan y sebagai variabel terikat (tak bebas)
Contoh:
Untuk fungsi yang digambarkan dalam diagram panah di atas:
Domain = Df = {1, 2, 3, 4}
Range = Rf = {2, 4}

Menentukan Daerah Asal Fungsi

Agar suatu fungsi terdefinisi (mempunyai daerah hasil di himpunan bilangan real), maka ada beberapa syarat yang harus dipenuhi.
1. Fungsi di dalam akar
2. Fungsi pecahan
3. Fungsi dimana penyebutnya adalah fungsi lain dalam bentuk akar
4. Fungsi logaritma
Contoh:
Daerah asal untuk fungsi

adalah:
x2 + 3x – 4 > 0
(x + 4)(x – 1) > 0
Pembuat nol: x = –4 dan x = 1
Jika x = 0 maka hasilnya 02 + 3.0 – 4 = –4 (negatif)

Jadi Df = {x | x < –4 atau x > 1}

Aljabar Fungsi

Jika f : x → f(x) dan g : x → g(x) maka:
  1. (f + g)(x) = f(x) + g(x)
  2. (f – g)(x) = f(x) – g(x)
  3. (f × g)(x) = f(x) × g(x)
Daerah asalnya:
Df+g, Df–g, Df×g = Df ∩ Dg (irisan dari Df dan Dg)
Df/g = Df ∩ Dg dan g(x) ≠ 0

Komposisi fungsi

Notasi:
f komposisi g dapat dinyatakan dengan f o g (dapat juga dibaca ”f bundaran g”)
(f o g)(x) = f(g(x)) (g dimasukkan ke f)
Ilustrasi:
Contoh: f(1) = 2, g(2) = 0, maka (g o f )(1) = g(f(1)) = g(2) = 0
Sifat-Sifat Komposisi Fungsi
1. Tidak bersifat komutatif
(f o g)(x) ≠ (g o f)(x)
2. Asosiatif
(f o (g o h))(x) = ((f o g) o h)(x)
3. Terdapat fungsi identitas I(x) = x
(f o I)(x) = (I o f)(x) = f(x)

Contoh 1:
f(x) = 3x + 2
g(x) = 2x + 5
h(x) = x2 – 1
Cari (f o g)(x), (g o f)(x), dan (f o g o h)(x)!
(f o g)(x) = f(g(x)) = f(2x + 5)
=  3(2x + 5) + 2
= 6x + 15 + 2 = 6x + 17
(g o f)(x) = g(f(x)) = g(3x + 2)
= 2(3x + 2) + 5
= 6x + 4 + 5 = 6x + 9
(f o g o h)(x) = f(g(h(x))) = f(g(x2 – 1))
= f(2(x2 – 1) + 5)
= f(2x2 – 2 + 5)
= f(2x2 + 3)
= 3(2x2 + 3) + 2
= 6x2 + 9 + 2 = 6x2 + 11
atau dengan menggunakan rumus (f o g)(x) yang sudah diperoleh sebelumnya,
(f o g o h)(x) = (f o g)(h(x)) = (f o g)(x2 – 1)
= 6(x2 – 1) + 17
= 6x2 – 6 + 17
= 6x2 + 11

Contoh 2:
f(x) = 3x + 2
(f o g)(x) = 6x + 17
Cari g(x)!
(f (g(x)) = 6x + 17
3.g(x) + 2 = 6x + 17
3.g(x) = 6x + 17 – 2
3.g(x) = 6x + 15
g(x) = 2x + 5

Contoh 3:
g(x) = 2x + 5
(f o g)(x) = 6x + 17
Cari f(x)!
f(2x + 5) = 6x + 17
misalkan: 2x + 5 = a → 2x = a – 5
f(a) = 3(a – 5) + 17
f(a) = 3a – 15 + 17
f(a) = 3a + 2
f(x) = 3x + 2

Contoh 4:
f(x) = x2 + 2x + 5
(f o g)(x) = 4x2 – 8x + 8
Cari g(x)!
f(g(x)) = 4x2 – 8x + 8
(g(x))2 + 2g(x) + 5 = 4x2 – 8x + 8
Gunakan cara melengkapkan kuadrat sempurna
(g(x) + 1)2 – 1 + 5 = 4x2 – 8x + 8
(g(x) + 1)2 = 4x2 – 8x + 8 – 4
(g(x) + 1)2 = 4x2 – 8x + 4
(g(x) + 1)2 = (2x – 2)2
g(x) + 1 = 2x – 2 atau g(x) + 1 = –(2x – 2)
g(x) = 2x – 3 atau g(x) = –2x + 3
atau
f(g(x)) = 4x2 – 8x + 8
(g(x))2 + 2g(x) + 5 = 4x2 – 8x + 8
Karena pangkat tertinggi di ruas kanan = 2, maka misalkan  g(x) = ax + b
(ax + b)2 + 2(ax + b) + 5 = 4x2 – 8x + 8
a2x2 + 2abx + b2 + 2ax + 2ab + 5 = 4x2 – 8x + 8
a2x2 + (2ab + 2a)x + (b2 + 2ab + 5) = 4x2 – 8x + 8
Samakan koefisien x2 di ruas kiri dan kanan:
a2 = 4 → a = 2 atau a = –2
samakan koefisien x di ruas kiri dan kanan:
untuk a = 2 → 2ab + 2a = –8
4b + 4 = –8
4b = –12 → b = –3
untuk a = –2  → 2ab + 2a = –8
–4b + 4 = –8
–4b = –12 → b = 3
Jadi g(x) = 2x – 3 atau g(x) = –2x + 3

Invers Fungsi

Notasi
Invers dari fungsi f(x) dilambangkan dengan f–1 (x)

Ilustrasi
Contoh: Jika f(2) = 1 maka f–1(1) =2
Jika digambar dalam koordinat cartesius, grafik invers fungsi merupakan pencerminan dari grafik fungsinya terhadap garis y = x
Sifat-Sifat Invers Fungsi:
  1. (f–1)–1(x) = f(x)
  2. (f o f–1)(x) = (f–1 o f)(x) = I(x) = x, I = fungsi identitas
  3. (f o g)–1(x) = (g–1 o f–1)(x)
Ingat: (f o g–1)(x) ¹ (f o g)–1(x)

Mencari invers fungsi
  1. Nyatakan persamaan fungsinya y = f(x)
  2. Carilah x dalam y, namai persamaan ini dengan x = f–1(y)
  3. Ganti x dengan y dan y dengan x, sehingga menjadi y = f–1(x), yang merupakan invers fungsi dari f
Contoh 1:
f(x) = 3x – 2
invers fungsinya:


Contoh 2:

Cara Cepat!


Contoh 3:
f(x) = x2 – 3x + 4
Invers fungsinya


Contoh 4:


24 Responses
  1. Unknown Says:

    Mantap gan sangat bermanfaat!! tapi apakah materi advancenya buat mahasiswa? semacam fungsi baru kaya fungsi pangkat, akar, polinom dll?? visit my univ in www.ipb.ac.id


  2. Unknown Says:

    Thanks gan infonya :D


  3. Unknown Says:

    makasih ya infonya :)


  4. Unknown Says:

    Terimakasih sudah membantu saya lulus ujian :)


  5. Unknown Says:

    its good.. thank you so much


  6. Faris Says:

    Terimakasih Ilmunya, sangat bermanfaat :)



  7. Unknown Says:

    thanks materinya, ngebantu banget :)



  8. Unknown Says:

    Thanks kak udah bantu aku dan kita semua




  9. Unknown Says:

    Maaf ka, di contoh soal komposisi fungsi yang nomor 3 "f(a) = 3(a – 5) + 17" itu angka 3 nya darimana ya?


  10. Unknown Says:

    Terdapat kesalahan, mohon perbaiki. Pada Contoh 2 itu invers fungsinya adalah 5x+1/2-x atau -5x-1/x-2.


  11. Unknown Says:

    Makasih Infonya.


  12. thanks!~ membantu banget nih buat ngerjain tugas 1500 soal yg dikasih guru matematika wajib --""





  13. fikri Says:

    THX lah meski agak pusing



  14. Unknown Says:

    Setelah saya lihat ini nilai saya bertambah 100 ¹²³⁴⅝6